Formal Languages & Automata Theory

PREREQUISITIES: Data Structure and Programming Methodology

Source	Торіс
Chapter 1 (Mathematical Preliminaries)	1. Sets, Relations and Functions
	2. Graphs and Trees
	3. Strings and Their Properties
	4. Examples
	1
Chapter 2 (Theory of Automata)	Defintion of Automaton
	2. Description of a finite Automaton
	3. Transition system
	4. Properties of Transition Functions
	5. Acceptability of a string by a Finite
	Automaton
	6. Nondeterministic Finite State Machines
	7. Equivalence of DFA and NDFA
	8. Minimization of Finite Automaton
Chapter 3 (Formal Languages)	Basic Definitions and Examples
	2. Chomsky hierarchy of languages
	3. Recursive and Recursively Enumerable
	Sets
	4. Opeartions on Languages
	5. Languages and Automaton
Chapter 4 (Regular Languages)	 Regular Expressions
	2. Finite Automaton and Regular Expressions
	3. Pumping lemma of regular sets
	4. Closure properties of regular sets
	5. Regular sets and Regular Grammar
Chapter 5 (Context- free Languages)	Context free Languages and derivation
	Trees
	2. Ambiguity in context free grammars
	3. Minimization of Context Free Grammars
	4. Chomsky normal form
	5. Greiback normal form
	6. Pumping Lemma for Context Free
	Languages
	2456560
Chapter 6 (Push Down Automata)	1. Definition
	2. Acceptance of CFL
	3. Acceptance by final state and acceptance
	by empty state and its equivalence
	4. Equivalence of CFL and PDA
Chapter 7 (Turing Machine)	1. Definition
	2. Design of TM

	3. Universal Turing Machine4. Linear bounded automata and context sensitive language5. Halting problem of Turing machine
Chapter 8 (Computability Theory)	 Introduction and Basic concepts Definition of P and NP problems NP complete and NP hard problems Correspondence problem Decidability of problems